US009246836B2

a2z United States Patent (10) Patent No.: US 9,246,836 B2
Biswas 45) Date of Patent: Jan. 26, 2016
(54) SINGLE PRODUCER, SINGLE CONSUMER (56) References Cited
LOCKLESS FIFO/LIFO QUEUE
U.S. PATENT DOCUMENTS
(75) Inventor: Shubhra Sankar Biswas, Oak Park, IL,
K K ity etal. ...
(US) 5,671,446 A * 9/1997 Raki 1 710/54
6,487,202 B1* 11/2002 Klausmeier et al. 370/395.1
. . . 2002/0114338 Al* 82002 Craigetal. 370/401
(73) Assignee: Sybase, Inc., Dublin, CA (US) 2003/0081624 AL* 52003 Aggarwal et al. . 370/412
2004/0160960 Al* 82004 Montaetal. 370/395.4
(*) Notice: Subject to any disclaimer, the term of this 2005/0270977 Al* 12/2005 Kingetal. ..o, 370/235
patent is extended or adjusted under 35
U.S.C. 154(b) by 378 days. OTHER PUBLICATIONS
. Chisnall, David, “Writing Concurrent Systems, Part 2: Lockless Data
(21) Appl. No.: 13/599,527 Structures”, Sep. 20, 2010, 2 pages, http://www.informit.com/ar-
(22) Filed: Aug. 30, 2012 tlcles/amcle.a.spx?pZI626980. . .
Hedstrom, Kjell, “Lock-Free Single-Producer—Single Consumer
. s e Circular Queue”, Jun. 9, 2011, 7 pages, http://www.codeproject.com/
(65) Prior Publication Data Articles/43510/Lock-Free-Single-Producer-Single-Consumer-Cir-
US 2014/0064291 Al Mar. 6,2014 cular.
(51) Int.Cl * cited by examiner
HO4L 12/863 (2013.01)
HO4L 12/861 (2013.01) Primary Examiner — Un C Cho
HO4L 12/883 (2013.01) Assistant Examiner — Peian Lou
HO4L 12/54 (2013.01) (74) Attorney, Agent, or Firm — Sterne, Kessler, Goldstein
oL 12720 (01300 SR PLLC
HO4L 12/741 (2013.01) 57 ABSTRACT
HO4L 12/935 (2013.01) 7
(52) U.S.CL A query inserter receives data elements having individual
CPC oo HO4L 47/624 (2013.01) priority types for placement in a queue, and utilizes the pri-
(58) Field of Classification Search ority types of the received data elements to determine place-

CPC . HO4L 49/90; HO4L 49/9015; HO4L 47/6245;
HO4L 47/624
370/412, 413, 415, 417, 429, 440,
711/158-160; 718/102, 103; 719/313,
719/314

See application file for complete search history.

ment in the queue relative to an initial location established
when a first data element is placed in an empty queue in order
to manage the queue with a combination of first-in first-out
and last-in first-out queue functionality.

16 Claims, 10 Drawing Sheets

primary array 205
hst buffer 230 205a 205b 205c 205n ¢
s - -
{ { ¢ ¢ ;
N {__4] : /I Jj CALIERES put:;d_z
f + Sooel 3 get—idz"
¢ ™~
{ tail array 210 {
Y s 220
210b 210c 210n

y
3

‘\(
%
1

{

Y

L
o,
s

stop node 22§_

~

&‘ 3
i iy
.
b
' |
t\ |

N,

\‘!\ N 3
P
|

dequeued 7!

linked list 602

- ——— — — —

queue 201

U.S. Patent

Jan. 26, 2016 Sheet 1 of 10 US 9,246,836 B2
100
g%,./’
100
\ 105d 105¢c 105b 105a
10\ DI N T 115
\} \\, ‘\,\' \\ \\ -,\;
{ {
\\\\Q}",\\\\\\»— »»“L}i\ L».%

U.S. Patent Jan. 26, 2016 Sheet 2 of 10

primary array 205
A

{) Y
list buffer 230 205z 208b 205¢ 205n
- o rd < <
§)
...,c:':' P :’4 AR : Ij
tail array 210
stop node 226 210a 210b 210c 210n
v Vi
(s ¢ ¢ §
/-4\’ lj 5—25 >>>>>>>>>> [—i
\L/ Li ,_J__\:_. eSS -

US 9,246,836 B2

215
puf;:Ed:O
get-ig=0

<
220

Sheet 3 of 10 US 9,246,836 B2

U.S. Patent Jan. 26, 2016

primary array 205
&, 215
list bufier 230 205a 2056 208¢ 208n ;

« <
:) s [jS e lﬁ put-ic=2
:Q VRN V2 I TR get-id=0

f’j 4"{() . \
; / (
f { tail array 210 220
[.
stop node 225 | 2103 210b 210c 210n
O ;

queue 201

U.S. Patent Jan. 26, 2016 Sheet 4 of 10 US 9,246,836 B2

primary array 205
A
list buffer 230 ¥ 205a 205b 205¢ 205n 215
s ¢
| Ll ra T put-id=2
il / f’ i) get-id=0
j’ tail array 210 ?
g A \ 220
stop node 225/ 210a; 2100 210c 210n
IS
lE ‘i :i‘ g- - ; : EE IR E
T ‘:(s.....w&é 11‘ L daand == . : ::. ..» s -
§ 4
A VA
——————— S g hu el
| kiRRii |
' B T !
{} SRR < |
queue 2017 | M5 L/ 350 |
! {2 |
{ { |
|
: 455 !

FIG. 4

Sheet 5 of 10 US 9,246,836 B2

U.S. Patent Jan. 26, 2016
primary array 205
A
\
list buffer 230 2958 205b 205c 205n 215
PANA SERRON put-id=2
.‘"‘f {.»’f N i .
/ tail array 210 get-id=0
/ A X
210n 220

.e't{ I {
stop node 22§ 210a) 210b 210c¢
2 p P
¢ . {

queue 201

U.S. Patent Jan. 26, 2016 Sheet 6 of 10 US 9,246,836 B2

primary array 205

™.

\ y
{ _(' “% /] i:j S ﬁ puti{/jzz

;.,:)‘:
o
(&2
[l
- %
oed
)
[N
o
™
]
R
n
)
N
fan]
{h
o
[
3
[0
s
N
(]
(6]
3 3
PN ﬁ.}
(93]

= e = = get-id=1
i/ . ™
/ tail array 210 {

\
220

stop node 225 \ 2104 2106 210c 210n

< % H Y

b i ~
‘,.-\4(’:'_ X 4 R S LA TR R
R N : :
{ . ol S
A \ T O N = R RPN

\ = £y \\ = =
; \\ \\ 359;‘i
I et T i e
E I oy | 1 |
. ATL T .
Lo Jlapd 11 gd |
N4 w1 4 |
-“’“Qii?j“z‘"% o ”“““12 {
I =i 1 és |
-')‘ ““““ (. T’\. |
g q :) L=y |
equeue . ! 201
. . I 455 | 660 queue
linked list 602 | N |

U.S. Patent Jan. 26, 2016 Sheet 7 of 10 US 9,246,836 B2

780

&

Client Device 705

Cusue Manager 710

Queue Inserter
720

Queue Remover
725

U.S. Patent Jan. 26, 2016 Sheet 8 of 10

US 9,246,836 B2

800

Receive data elements having individual
priority types for placement in a queue

~BO5

Utilize the priority types of the received data
elements to determine placement in the queue
relative to an initial location established when a
first data element is placed in an empty queue

in order to manage the queue with a
combination of first-in first-out and last-in first-
out queue functionality

_~810

U.S. Patent Jan. 26, 2016 Sheet 9 of 10 US 9,246,836 B2

860

Frevent additional data elemerts from | gne
being added to a linked list including one [~
or more data elements

¥

| dentify an oldest data element refative
| 1o the existing data slements in the
gusue, the identified oldest dala element
| being at a head of the linked list

_~910

Remove the linked list from the queue {915

U.S. Patent

Bus

Jan. 26, 2016

/1004

1006

g Processor

R et

Graphics 41007

Procassing -
Unit

J

ki

Main Memory |~

Control
Logic

A

Secondary g

Storage Devices

............ rrrrrrrrr—r———

" Hard Disk et

Removable

Sheet 10 of 10

1008

L 1028A

1010

1012

1016

-
¢

Removable

Storage
Drive
:

i)

K4
!

{
1014

_{input/Cutput/Display

“{ Storage Unit

Control
Logic

£
10288

FIG. 10

US 9,246,836 B2

1000

&

Computer

o Useable

Medium
1024A

Computer Useable Medium

- “Devices 1022 (€ommunication Medium)
7 1024B
s 1030
——
3 »i Interface e @}i Control Logic | | Carrier
. ! Y Ew&——*— waves
e §"""”““"'”““"’""{?‘“""‘“"‘“E modulated
1018 with
1028C control
logic
A

US 9,246,836 B2

1

SINGLE PRODUCER, SINGLE CONSUMER
LOCKLESS FIFO/LIFO QUEUE

BACKGROUND

A thread may add requests to a queue, and another thread
may remove requests from the queue. Manipulating a request
may require multiple instructions. The queue is a shared
resource and a race condition may occur if, for example, a
thread attempts to read from the queue while another thread
attempts to add a request to the queue. For example, if one
thread attempts to read from the queue while another is in the
middle of manipulating the queue, the reading thread may
find the queue in an inconsistent state. This may result in
corruption of the queue.

A common mechanism for ensuring that only one thread
manipulates the queue at atime is to provide a locking mecha-
nism for the queue. For example, if a thread attempts to add a
request to the queue, the thread first obtains a lock and then
safely adds the request to the queue. After adding the request,
the thread releases the lock to allow another thread to manipu-
late the queue. Locking, however, is relatively expensive and
can limit scalability. The more locks that are implemented in
a system, the more time is spent acquiring and releasing those
locks, which is a relatively expensive operation.

Further, an example of a widely used queue is a first-in,
first-out (FIFO) queue. In a FIFO queue, data elements
inserted before other data elements are removed before the
other data elements. Accordingly, a high priority request in a
FIFO queue must wait until other requests in the queue have
been removed before the high priority request is serviced.
This may lead to undesirable results.

BRIEF SUMMARY

System, method, and computer program product embodi-
ments for managing a lockless queue are provided. In an
embodiment, a single producer thread and a single consumer
thread manipulate the lockless queue. According to an
example method, data elements having individual priority
types are received for placement in a queue. The priority types
of'the received data elements are utilized to determine place-
ment in the queue relative to an initial location established
when a first data element is placed in an empty queue in order
to manage the queue with a combination of first-in first-out
and last-in first-out queue functionality.

Further features and advantages, as well as the structure
and operation of various embodiments thereof, are described
in detail below with reference to the accompanying drawings.
Itis noted that the embodiments are not limited to the specific
embodiments described herein. Such embodiments are pre-
sented herein for illustrative purposes only. Additional
embodiments will be apparent to persons skilled in the rel-
evant art(s) based on the teachings contained herein.

BRIEF DESCRIPTION OF THE
DRAWINGS/FIGURES

FIG. 1 illustrates an example First-in, First-out queue.

FIG. 2 illustrates a FIFO/Last-in, First-out (LIFO) queue
arrangement, according to an example embodiment.

FIG. 3 illustrates a FIFO/LIFO queue after two data ele-
ments of the first priority type have been inserted in a queue,
according to an example embodiment.

FIG. 4 illustrates a FIFO/LIFO queue after a data element
of the second priority type has been inserted in a queue,
according to an example embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 illustrates a FIFO/LIFO queue after a linked list in
a queue has been closed, according to an example embodi-
ment.

FIG. 6 illustrates a FIFO/LIFO queue after a linked list has
been removed from the queue and a data element of the
second priority type has been inserted in the queue, according
to an example embodiment.

FIG. 7 illustrates a system for managing a lockless FIFO/
LIFO queue, according to example embodiments.

FIG. 8 illustrates a flowchart of a method for managing a
lockless FIFO/LIFO queue, according to an example embodi-
ment.

FIG. 9 illustrates a flowchart of a method for removing data
elements from a lockless FIFO/LIFO queue, according to an
example embodiment.

FIG. 10 illustrates an example computer system, according
to an example embodiment.

Features and advantages of embodiments will become
more apparent from the detailed description set forth below
when taken in conjunction with the drawings. In the draw-
ings, like reference numbers generally indicate identical,
functionally similar, and/or structurally similar elements.
Generally, the drawing in which an element first appears is
indicated by the leftmost digit(s) in the corresponding refer-
ence number.

DETAILED DESCRIPTION

1. Overview

II. FIFO Queue

1I1. FIFO/LIFO Queue
A. Priority Types
B. Insertion of Data Elements
1. Insertion of Data Elements of the First Priority Type
2. Insertion of Data Elements of the Second Priority Type
C. Removal of Data Elements

IV. Example System Embodiment

V. Example Method Embodiment

V1. Example Computer Implementation Embodiment

1. Overview

The following detailed description refers to the accompa-
nying drawings that illustrate exemplary embodiments. Other
embodiments are possible, and modifications can be made to
the embodiments within the spirit and scope of the embodi-
ments. Therefore, the detailed description is not meant to
limit the embodiments. Rather, the scope of the embodiments
is defined by the appended claims.

A queue is a collection in which data elements are stored
and retrieved in a specific order. In an example, a producer
thread may produce one or more data elements and place the
one or more data elements in a data structure, such as a queue.
A consumer thread may remove a data element from the
queue and process the data element.

Described herein are embodiments for managing a lockless
FIFO/LIFO queue. In an example, managing alockless FIFO/
LIFO queue may include receiving data elements having
individual priority types for placement in a queue, and utiliz-
ing the priority types of the received data elements to deter-
mine placement in the queue relative to an initial location
established when a first data element is placed in an empty
queue in order to manage the queue with a combination of
first-in first-out and last-in first-out queue functionality. In an
example, a first-in first-out data element may have a first
priority type and a last-in first-out data element may have a
second priority type.

US 9,246,836 B2

3

Further, this disclosure describes a data element of a sec-
ond priority type having a higher priority than a data element
of a first priority type. It should also be recognized that in
some embodiments, a data element of a first priority type may
have a higher priority than a data element of a second priority

type.
II. FIFO Queue

FIG. 1 illustrates an example First-in, First-out (FIFO)
queue 100. In a FIFO queue, a data element that is inserted
before other data elements in the FIFO queue will be removed
before the other data elements. In this disclosure, a data
element that is said to be “inserted before” another data ele-
ment in the queue is removed from the queue before the other
data element. Similarly, a data element that is said to be
“inserted after” another data element in the queue is removed
from the queue after the other data element.

In FIFO queue 100, data elements are inserted at a first end
(e.g., tail) 110 of FIFO queue 100 and removed at a second
end (e.g., head) 115 of FIFO queue 100.

Queue 100 includes data elements 105a-1054. In an
example, a producer thread produces data elements 105a-
105d, respectively, and inserts them at tail end 110 of FIFO
queue 100, respectively. The producer thread may then pro-
duce data element 105¢, and insert it at tail end 110 of FIFO
queue 100 after data element 1054.

A consumer thread may remove data elements from head
end 115 of FIFO queue 100. In an example, the consumer
thread removes data element 1054 before removing other data
elements. After removing data element 1054, the consumer
thread may then remove data elements 1055-105d, respec-
tively.

The inventor recognized that a FIFO queue may contribute
to unnecessary delays in an urgent data element being
removed from the queue and processed. For example, the
producer thread may produce a high priority data element
105¢, and thus it may be undesirable for high priority data
element 105¢ to wait until all other data elements (e.g., data
elements 105a-1054) in FIFO queue 100 have been removed.

One solution provided by the inventor in this disclosure
includes allowing data elements to have different priority
types such that data elements having a higher priority type are
added before (closer to the head of the queue) data elements
having a lower priority type in the queue. Thus, the removal of
data elements may be prioritized based on a priority type of
each data element. Further, a lockless queue is provided so
that insertions of data elements in the queue are not stalled
waiting for other data elements to be read from the queue.

In an embodiment, a single producer and a single consumer
operate on a lockless FIFO/LIFO queue. More details on the
queue arrangement are below.

II1. FIFO/LIFO Queue

A. Priority Types

According to an embodiment, data elements having indi-
vidual priority types are inserted in the queue. The priority
type of a data element is considered when it is inserted in the
queue. In an example, the priority types of the data elements
are utilized to determine placement in the queue relative to an
initial location established when a first data element is placed
in an empty queue.

In an embodiment, a data element inserted in a queue may
be of a first priority type or a second priority type. A priority
type may indicate an urgency of the data element. For
example, a data element of the second priority type may have

10

15

20

25

30

35

40

45

50

55

60

65

4

a greater urgency for servicing than a data element of the first
priority type. Accordingly, the data element of the second
priority type may be serviced before a data element of the first
priority type.

FIG. 2 illustrates a FIFO/Last-in, First-out (LIFO) queue
arrangement, according to an example embodiment. In a typi-
cal LIFO queue, a data element is inserted and removed at one
end of the queue, such that the last element inserted is the first
element removed.

FIG. 2 illustrates a lockless FIFO/LIFO queue 201 that is
empty and does not include any data elements. Queue 201
may include data elements of different priority types. In an
embodiment, queue 201 is a circular buffer including one or
more linked lists.

A producer thread may produce one or more data elements
and insert the data elements in queue 201. A consumer thread
may remove data elements from queue 201 and process the
one or more data elements.

FIG. 2 also shows a primary array 205, a tail array 210, and
indices put-id 215 and get-id 220. Primary array 205 includes
primary array elements 205a-2057 and may store up to N
references to data elements of a first priority type that are
inserted in the queue. Primary array element 205¢ is at posi-
tion zero in primary array 205, primary array element 2055 is
at position one in primary array 205, and primary array ele-
ment 205z is at position n in primary array 205. Index put-id
215 references the next available position in primary array
205 that may be used to insert a data element in queue 201.

Queue 201 may include a linked list of data elements (not
shown in FIG. 2). Tail array 210 includes tail array elements
2104a-2107 and may store a reference to an end of the linked
list in queue 201. Tail element 210q is at position zero in tail
array 210, tail array element 2104 is at position one in tail
array 210, and tail array element 210z is at position n in tail
array 210. The linked list in queue 201 may include one or
more data elements that include references. Index get-id 220
references a position in primary array 205 that may be used to
remove a data element from queue 201.

FIG. 2 also shows a stop node 225 and a list buffer 230. In
an embodiment, data elements may be added or removed
from queue 201 without requiring locks. Stop node 225 and
list buffer 230 may assist in providing this advantage. Accord-
ingly, it may be unnecessary for a producer thread to wait until
all data elements to be removed have been removed from
queue 201 before inserting a data element in queue 201.

Stop node 225 may close the linked list in queue 201,
preventing additional data elements from being added to the
linked list in queue 201. In an embodiment, preventing addi-
tional data elements from being added to the linked list in
queue 201 includes identifying a most recently inserted data
element in the linked list in queue 201 and updating the
reference included in the most recently inserted data element
to reference stop node 225.

When a data element in the linked list in queue 201 refer-
ences stop node 225, this indicates to the producer thread that
the linked list in queue 201 is closed. The producer thread
may then insert data elements at another position in queue
201. In this way, queue 201 is accessible even when the
consumer thread reads data elements from queue 201. Subject
to memory constraints, queue 201 does not block when data
elements are inserted into the linked list in queue 201.
Accordingly, data elements having a high urgency (e.g., data
elements of the second priority type) will always be
enqueued, and it is unnecessary for the producer thread to
wait until the data elements have been read from queue 201
before inserting data elements in queue 201.

US 9,246,836 B2

5

List buffer 230 may reference a head of the linked list of
data elements in queue 201, and the linked list may be
delinked from primary array 205. As such, list buffer 230 may
reference the linked list that is no longer in queue 201. The
data elements in the linked list may be traversed and pro-
cessed without conflicting with data elements being inserted
in queue 201.

The FIFO/LIFO queue arrangement of FIG. 2 may be
lockless and use an atomic compare-and-swap instruction. A
compare-and-swap instruction ensures that the threads will
have a consistent view of any location in queue 201 and do not
change the shared resource at the same time. For example,
contention may occur if at approximately the same time, the
producer thread inserts a data element having a second prior-
ity type in queue 201 by trying to append the data element at
the tail of the linked list and the consumer thread updates the
most recently inserted data element in the linked list in queue
201 to reference stop node 225. The compare-and-swap
instruction may be used to determine whether the most
recently inserted data element in the linked list references
stop node 225 or a NULL value. If the most recently inserted
data element in the linked list references stop node 225, then
the linked list is closed and the producer thread does not insert
a data element into the linked list. Rather, the producer thread
inserts a data element at the next available position in queue
201. For example, the producer thread may update another
linked list at the next available position in queue 201 and
insert the data element into this linked list.

Further, read and write of integral values of less than or
equal to the bus width may be atomic operations.

Data to be inserted in queue 201 may be stored in a data
structure. A data element in the linked list may, for example,
include a reference to another data element in the linked list,
avalue such as NULL, or stop node 225. A reference may be,
for example, a pointer to another data element. The data to be
inserted in queue 201 may be stored in a node having a
reference to another node (e.g., the next node in queue 201) or
to a value such as NULL. In an example, a Node data element
includes a “next” pointer that points to the next data element
in queue 201. The next data element in queue 201 may be the
next data element to be removed from queue 201 after the data
element that references the next data element is removed.

B. Insertion of Data Elements

Data elements may be inserted in queue 201 based on a
priority type of the data element. According to an embodi-
ment, inserting the data element in queue 201 may include
determining whether queue 201 is empty. When queue 201 is
determined to be empty, a received data element is inserted at
an initial location in queue 201. As such, when queue 201 is
empty, inserting a data element of a first priority type may be
functionally the same as inserting a data element of the sec-
ond priority type in queue 201.

When queue 201 is determined to be not empty, it is deter-
mined whether the received data element is of a first priority
type or a second priority type. Utilizing the priority types of
the received data elements to determine placement in the
queue relative to an initial location may include when the
received data element is determined to be of the first priority
type, the received data element is inserted in queue 201 after
each existing data element of the first priority type in queue
201 (i.e., closer to the tail end of queue 201). Utilizing the
priority types of the received data elements to determine
placement in the queue relative to an initial location may also
include when the received data element is determined to be of
the second priority type, the received data element is inserted
in queue 201 before each existing data element of the first

10

15

20

25

30

35

40

45

50

55

60

6

priority type after the initial location in queue 201 (i.e., closer
to the head end of queue 201).
1. Insertion of Data Elements of the First Priority Type

Related to FIG. 2, FIG. 3 illustrates a FIFO/LIFO queue
201 after two data elements of the first priority type 345, 350
have been inserted in queue 201 from FIG. 2, according to an
example embodiment. Referring to FIG. 2, prior to insertion
of'elements 345 and 350, queue 201 is empty and index put-id
215 is equal to zero, indicating that position zero in primary
array 205 is the next available position in primary array 205
that may be used to insert a data element in queue 201.

In the example of FIG. 3, a producer thread produces data
elements of the first priority type 345 and 350. The producer
thread inserts data element 345 in queue 201 at an initial
location, and both primary array 205 and tail array 210 are
updated to point to data element 345. In particular, primary
array element 205q at position zero in primary array 205 is
updated to reference data element 345, and tail array element
210aq at position zero is updated to reference data element
345, the most recently inserted data element in the linked list
in queue 201. Accordingly, a first linked list including one
data element is generated that includes data element 345.
Also, index put-id 215 is incremented to one, indicating that
position one in primary array 205 is the next available posi-
tion in primary array 205 that may be used to insert a data
element in queue 201. In an embodiment, index “put-id” 215
is incremented only after primary array 205 and tail array 210
have been updated to point to the data element 345. In this
way, the consumer thread will not attempt to read the data
element before producer thread is done inserting the data
element in queue 201.

The producer thread then produces data element 350. The
producer thread determines whether data element 350 is of a
first priority type or a second priority type. For purposes of
illustration, assume data element 350 is of the first priority
type, indicated by a “1” in data element 350. The producer
thread then inserts data element 350 in queue 201 after each
existing data element of the first priority type in queue 201. In
particular, the producer thread may insert data element 350 in
queue 201 after data element 345, closer to the tail end of
queue 201. Both primary array 205 and tail array 210 are
updated to point to data element 350. In particular, primary
array element 2055 at position one in primary array 205 is
updated to reference data element 350, and tail array element
2105 at position one in tail array 210 is updated to reference
data element 350 at the tail end of a linked list, different from
the linked list that includes data element 345, in queue 201.
Accordingly, a second linked list including one data element
is generated that includes data element 350.

Index put-id 215 is incremented to two, indicating that
position two in primary array 205 is the next available posi-
tion in primary array 205 that may be used to insert a data
element of the first priority type in queue 201.

In an embodiment, the example code shown below (or
functionally similar code) may be used to insert a data ele-
ment of the first priority type in queue 201 after each existing
data element of the first priority type in queue 201.

bool insert_ firstprioritytype(Node * node)
{
if (putid + 1 % SIZE == getid) // queue is full
return false;
array[putid] = node;
tails[putid] = node; // insert_ firstprioritytype () always places a

//mode into an empty slot,
//point the tail for this slot to the new node

US 9,246,836 B2

7

-continued

putid = putid + 1% SIZE; // increment put index and roll over, if
needed

return true;

After executing the above code (or functionally similar
code), a data element of the first priority type is inserted into
the next available position in queue 201, and index put-id 215
is incremented modulo N. Further, primary array 205 and tail
array 210 are updated to point to a new data element of the
first priority type. [f queue 201 is full, a false value is returned.
2. Insertion of Data Elements of the Second Priority Type

FIG. 4 illustrates the example FIFO/LIFO queue 201 after
a data element of the second priority type 455 has been
inserted in queue 201 in FIG. 3, according to an example
embodiment.

The producer thread produces data element of the second
priority type 455. To insert a data element in queue 201, it is
determined whether queue 201 is empty. Referring back to
the example of FIG. 3, queue 201 is not empty and includes
data elements 345 and 350. The producer thread then deter-
mines whether new data element 455 is of a first priority type
or a second priority type. For illustrative purposes, assume
data element 455 is of the second priority type, indicated by a
“2” in data element 455.

The producer thread then inserts data element 455 in queue
201 after the initial location in queue 201. The initial location
in queue 201 is a location of an oldest data element relative to
the existing data elements in queue 201. In an example, in
queue 201, data element 345 is at an initial location in queue
201. Accordingly, the producer thread inserts data element
455 in queue 201 before each existing data element of the first
priority type after data element 345.

In the example of FIG. 4, inserting data element 455 in
queue 201 before each existing data element of the first pri-
ority type after the initial location in queue 201 involves
inserting data element 455 into the first linked list including
data element 345. In particular, the producer thread may
insert data element 455 at the tail end of the first linked list.

In an example, a most recently inserted data element in the
first linked list may be identified. Data element 345 is the most
recently inserted data element in the first linked list. The first
linked list includes an oldest data element in the queue. The
oldest data element in queue 201 may be identified by deter-
mining the value of index get-id 220. For example, in FIG. 3,
index get-id 220 is zero. Accordingly, position zero in tail
array 210, tail array element 210aq, references data element
345, the most recently inserted data element in the first linked
list. Data element 345 is also the oldest data element in queue
201. Data element 455 is inserted into the first linked list by
updating the reference included in data element 345 to refer-
ence the newly inserted data element 445 of the second pri-
ority type using, for example, the compare and swap opera-
tion. In an example, the compare and swap operation checks
whether the reference included in data element 345 points to
NULL. If so, the first linked list is not closed and an additional
data element (e.g., data element 455) can be appended to the
first linked list. Tail array element 210a is then updated to
point to data element 455, which is now the new tail of the first
linked list.

Thereafter, queue 201 includes data elements 345, 350, and
455, primary array 2054 references data element 345, and tail
array 210a references data element 455, the most recently
inserted data element in the first linked list.

10

20

25

30

35

40

45

50

55

60

65

8

The producer thread may insert another data element in the
first linked list by inserting the new data element at the new
tail end of the first linked list. For example, in FIG. 4, another
new data element of the second priority type may be inserted
into the first linked list after data element 455 by updating the
reference included in data element 455 to reference the newly
inserted data element of the second priority type. Tail array
210a may then be updated to reference the newly inserted
data element of the second priority type.

In an embodiment, the code shown below (or functionally
similar code) may be used to insert a data element of the
second priority type in queue 201 before each existing data
element of the first priority type.

bool insert_secondprioritytype (Node * node)

{
int getlocal = getid; // store the get index locally
if (putid == getid) { // the queue is empty, only insert_ xxx
operations can
array[putid] = node; // change this state, so there is no
contention with dequeue
tails[putid] = node;
putid = putid + 1% SIZE;
return true;
else { // the queue is not empty, we are
going to
Node * temp = tails[getlocal]; // put this on the tail
Node * next = temp—>next;
if (next == &stopNode) // dequeue() has marked this list as
closed, try again
return false; // this time in the next slot.
if CAS(&temp->next, NULL, &stopNode) //CAS is
CompareAndSwap
tails[getlocal] = value; // we have managed to insert the node
at the end of
return true; // the list, swing the tail pointer to us
}
return false;
¥
After executing the above code (or functionally similar

code), a data element of the second priority type is inserted
into the linked list in queue 201. If queue 201 is empty,
inserting a data element of the second priority type is func-
tionally the same as inserting a data element of the first
priority type in queue 201. If queue 201 is not empty, index
get-id 220 is used to determine the location of the oldest data
element of the first priority type relative to the existing data
elements of the first priority type in queue 201. The newly
inserted data element of the second data type is linked to the
oldest data element of the first priority type, creating the
linked list. To create the linked list, the current terminator is
checked for NULL (e.g., by using atomic compare-and-
swap), and the new data element of the second priority type is
inserted at the end of the linked list. If the current terminator
is stop node 225, the linked list has been closed, and a false
value is returned. The next call will attempt to insert the data
element of the second priority type at the next available loca-
tion in the queue.
C. Removal of Data Elements

Data elements may be removed from the queue based on a
priority type of the data element. Removing one or more data
elements from the queue may include removing a linked list
from the queue. The linked list may include an oldest data
element in the queue.

In an embodiment, removing one or more data elements
includes preventing additional data elements from being
added to the linked list including one or more data elements.

US 9,246,836 B2

9

The linked list may include a data element of the first priority
type and zero or more data elements of the second priority
type. In an example, an oldest data element relative to the
existing data elements in queue 201 is identified. The oldest
data element is at a head of the linked list. The linked list is
removed from queue 201. The removed linked list may be
traversed starting at the head of the removed linked list. One
or more data elements in the removed linked list is processed
based on an order in which the removed linked list is tra-
versed.

FIG. 5 illustrates FIFO/LIFO queue 201 after the linked list
in queue 201 in FIG. 4 has been closed, according to an
example embodiment. Closing the linked list prevents addi-
tional data elements from being added to the linked list.
Referring back to FIG. 4, queue 201 includes data elements
345, 350, and 455. Data elements 345 and 350 are of the first
priority type, and data element 455 is of the second priority
type.

In an embodiment, preventing additional data elements
from being added to the linked list includes identifying a most
recently inserted data element in the linked list, and updating
a reference included in the most recently inserted data ele-
ment to reference stop node 225. The most recently inserted
data element in the linked list is identified by determining the
value of index get-id 220. For example, in FIG. 4, index get-id
220 is zero. Accordingly, position zero in tail array 210, tail
array element 2054, references data element 455, the most
recently inserted data element in the linked list in queue 201.

In the example of FIG. 5, data element 455 is the most
recently inserted data element in the linked list. The reference
included in data element 455 is updated to reference stop node
225 using the compare and swap operation. In this way,
additional data elements are prevented from being added to
the linked list.

FIG. 6 illustrates FIFO/LIFO queue 201 after linked list
602 has been removed from queue 201 and a data element of
the second priority type 660 has been inserted in queue 201,
according to an example embodiment.

In an embodiment, a list buffer 230 including a reference is
identified, and the reference included in list buffer 230 is
updated to reference the data element at the head of linked list
602. For example, list buffer 230 may reference the data
element at the initial location in queue 201. In an example, in
FIG. 6, list bufter 230 is identified and updated to reference
data element 345 at the head of linked list 602. Data element
345 at the head of linked list 602 is the data element at the
initial location in queue 201 and is the oldest data element in
queue 201. Linked list 602 includes data elements 345 and
455, and is removed from queue 201. Further, index get-id
220 is incremented to one, indicating a position in primary
array 205 that may be used to remove the next data element
from queue 201.

In an embodiment, after additional data elements are pre-
vented from being added to linked list 602, another data
element may be inserted in queue 201. Inserting another data
element in queue 201 includes determining whether queue
201 is empty. When queue 201 is determined to be empty, the
data element may be inserted at a second location, after the
initial location, in queue 201. When queue 201 is determined
to be not empty, it is determined whether the data element is
of'a first priority type or a second priority type. When the data
element is determined to be of the first priority type, the data
element is inserted in queue 201 after each existing data
element of the first priority type in queue 201.

When the data element is determined to be of the second
priority type, the data element is inserted into a second linked
list, different from the first linked list, in queue 201. If linked

10

40

45

10

list 602 has been removed from queue 201, a head of the
second linked list is the oldest data element relative to the
existing data elements in queue 201.

In the example of FIG. 6, data element 660 is of a second
priority type and is inserted in the linked list in queue 201 by
updating a reference included in data element 350 to refer-
ence data element 660. Further, tail array 2105 at position one
of'tail array 210 is updated to reference data element 660, the
most recently inserted data element in the linked list. Further,
index put-id 215 is two, indicating that position two in pri-
mary array 205 is the next available position that may be used
to insert a data element in queue 201.

In an embodiment, the code shown below (or functionally
similar code) may be used to remove a data element of a first
priority type or a second priority type from queue 201.

bool dequeue(Node ** node)

// there are nodes still in

the list we buffered,

return dequeue_from_ buffer(node); // return from the linked list
if (putid == getid) // queue is empty

return false;

// there is an element or a list at index ‘getid’. Move the list__buffer
to point to it

/I we will use the list buffer to retrieve the elements

int getlocal = getid; // save current getindex locally

list_ buffer = array[getid]; // list buffer points to the element

to retrieve

if (NULL != list_ buffer)

getid = getid + 1% SIZE;

getid = getlocal; // increment getid, insert_ firstprioritytype() will

use be able to
// use this slot. That is okay since we have already cached the
//elements in list__buffer
//insert__secondprioritytype() will use this slot if the queue becomes
// empty otherwise it will try to use the tail pointer

// loop until we are able to close the linked list

while (true) {

Node * temp = tails[getlocal];

Node * next = temp—>next;

if (CAS(&temp—>next, NULL, &stopNode))

break;

// the linked list in now cached in list buffer. Return elements from
list buffer
return get_ from_ buffer(value);

// This is executed only in dequeuing thread with no contention
bool get_ from_ buffer(Node ** value)

{
// we have returned everything from the list buffer, reset it
if (list__buffer == &stopNode) {
list__buffer = NULL;
return false;
¥

* value = list_ buffer;
list__buffer = list__buffer->next;
return true;

After executing the above code (or functionally similar
code), a next data element is retrieved, if available; otherwise
a false value is returned. If queue 201 has no data elements of
the second priority type, the data element at index get-id 220
is retrieved and index get-id 220 is incremented modulo N. If
queue 201 has one or more data elements of the second
priority type, they are retrieved from the linked list. In an
embodiment, the linked list is closed from further insertions
when one or more data elements is removed from queue 201.
This may involve having the last data element in the linked list
point to stop-node 225 using the atomic compare-and-swap
operator and incrementing “get-id” 220 modulo N. Subse-
quent insertions of data elements of the second priority type
will insert the new data element of the second priority type at
the next location. The linked list is then detached from pri-

US 9,246,836 B2

11

mary array 205 and tail array 210 and cached using list buffer
230. Element retrieval takes place from list buffer 230, with
no contention with primary array 205 and tail array 210.

IV. Example System Embodiment

FIG. 7 illustrates a system 700 for managing a lockless
FIFO/LIFO queue, according to example embodiments.

System 700 includes a client device 705. Client device 705
is a computing device. Examples of computing devices
include, but are not limited to, a central processing unit, an
application-specific integrated circuit, a computer, worksta-
tion, distributed computing system, computer cluster, embed-
ded system, stand-alone electronic device, networked device,
mobile device (e.g. mobile phone, smart phone, personal
digital assistant (PDA), navigation device, tablet or mobile
computing device), rack server, set-top box, or other type of
computer system having at least one processor and memory.
A computing process performed by a clustered computing
environment or server farm may be carried out across mul-
tiple processors located at the same or different locations.
Such a computing device may include software, firmware,
hardware, or a combination thereof. Software may include
one or more applications and an operating system. Hardware
can include, but is not limited to, a processor, memory and
user interface display.

Client device 705 includes a queue manager 710. Queue
manager 710 determines whether a queue is empty. When the
queue is determined to be empty, queue manager 710 inserts
a received data element at an initial location in the queue.
When the queue is determined to be not empty, queue man-
ager 710 determines whether the received data element is of a
first priority type or a second priority type.

Queue manager 710 also includes a queue inserter 720 and
a queue remover 725. Queue inserter 720 inserts data ele-
ments in a queue based on a priority type of the data element.
When the data element is determined to be of the first priority
type, queue inserter 720 inserts the data element in the queue
after each existing data element of the first priority type in the
queue. When the data element is determined to be of the
second priority type, queue inserter 720 inserts the data ele-
ment in the queue before each existing data element of the
first priority type after the initial location in the queue.

Queue remover 725 removes one or more data elements
from the queue.

V. Example Method Embodiment

Operations for the above-described embodiments may be
further described with reference to one or more logic flows. It
may be appreciated that the representative logic flows do not
necessarily have to be executed in the order presented, or in
any particular order, unless otherwise indicated. Moreover,
various activities described with respect to the logic flows can
be executed in serial or parallel fashion. The logic flows may
be implemented using one or more hardware elements and/or
software elements of the described embodiments or alterna-
tive elements as desired for a given set of design and perfor-
mance constraints. For example, the logic flows may be
implemented as logic (e.g., computer program instructions)
for execution by a logic device (e.g., a general-purpose or
specific-purpose computer).

FIG. 8 illustrates a flowchart 800 of a method for managing
data elements in a lockless FIFO/LIFO queue, according to
example embodiments.

In a step 805, data elements having individual priority
types for placement in a queue are received. In a step 810, the

10

15

20

25

30

35

40

45

50

55

60

65

12

priority types of the received data elements are utilized to
determine placement in the queue relative to an initial loca-
tion established when a first data element is placed in an
empty queue in order to manage the queue with a combination
of first-in first-out and last-in first-out queue functionality.

FIG. 9 illustrates a flowchart 900 of a method for removing
data elements from a lockless FIFO/LIFO queue, according
to example embodiments.

In a step 905, additional data elements are prevented from
being added to a linked list including one or more data ele-
ments. In a step 910, an oldest data element relative to the
existing data elements in the queue is identified, the identified
oldest data element being at a head of the linked list. In a step
915, the linked list is removed from the queue.

V1. Example Computer Implementation
Embodiment

In an example embodiment, the systems and methods
described herein are implemented using one or more well-
known computers, such as computer 700 shown in FIG. 7.

Computer 1000 can be any commercially available and
well known computer capable of performing the functions
described herein, such as computers available from Interna-
tional Business Machines, Apple, Sun, HP, Dell, Compaq,
Digital, Cray, etc.

Computer 1000 includes one or more processors (also
called central processing units, or CPUs), such as a processor
1006. The processor 1006 is connected to a communication
bus 1004. Processors 1006 may include any conventional or
special purpose processor, including, but not limited to, digi-
tal signal processor (DSP), field programmable gate array
(FPGA), and application specific integrated circuit (ASIC).

Computer 1000 includes one or more graphics processing
units (also called GPUs), such as GPU 1007. GPU 1007 is a
specialized processor that executes instructions and programs
selected for complex graphics and mathematical operations
in parallel.

Computer 1000 also includes a main or primary memory
1008, such as random access memory (RAM). The primary
memory 1008 has stored therein control logic 1028A (com-
puter software), and data.

Computer 1000 also includes one or more secondary stor-
age devices 1010. The secondary storage devices 1010
include, for example, a hard disk drive 1012 and/or a remov-
able storage device or drive 1014, as well as other types of
storage devices, such as memory cards and memory sticks.
The removable storage drive 1014 represents a floppy disk
drive, a magnetic tape drive, a compact disk drive, an optical
storage device, tape backup, etc.

The removable storage drive 1014 interacts with a remov-
able storage unit 1016. The removable storage unit 1016
includes a computer useable or readable storage medium
1024 having stored therein computer software 1028B (con-
trol logic) and/or data. Removable storage unit 1016 repre-
sents a floppy disk, magnetic tape, compact disk, DVD, opti-
cal storage disk, or any other computer data storage device.
The removable storage drive 1014 reads from and/or writes to
the removable storage unit 1016 in a well-known manner.

Computer 1000 also includes input/output/display devices
1022, such as monitors, keyboards, pointing devices, touch-
screen displays, etc.

Computer 1000 further includes a communication or net-
work interface 1018. The network interface 1018 enables the
computer 1000 to communicate with remote devices. For
example, the network interface 1018 allows computer 1000 to
communicate over communication networks or mediums

US 9,246,836 B2

13

1024B (representing a form of a computer useable or readable
medium), such as LANs, WANSs, the Internet, etc. The net-
work interface 1018 may interface with remote sites or net-
works via wired or wireless connections.

Control logic 1028C may be transmitted to and from com-
puter 1000 via the communication medium 1024B. More
particularly, the computer 1000 may receive and transmit
carrier waves (electromagnetic signals) modulated with con-
trol logic 1030 via the communication medium 1024B.

Any apparatus or manufacture comprising a computer use-
able or readable medium having control logic (software)
stored therein is referred to herein as a computer program
product or program storage device. This includes, but is not
limited to, the computer 1000, the main memory 1008, the
secondary storage devices 1010, the removable storage unit
1016 and the carrier waves modulated with control logic
1030. Such computer program products, having control logic
stored therein that, when executed by one or more data pro-
cessing devices, cause such data processing devices to oper-
ate as described herein, represent embodiments of the inven-
tion.

Embodiments can work with software, hardware, and/or
operating system implementations other than those described
herein. Any software, hardware, and operating system imple-
mentations suitable for performing the functions described
herein can be used.

It is to be appreciated that the Detailed Description section,
and not the Summary and Abstract sections, is intended to be
used to interpret the claims. The Summary and Abstract sec-
tions may set forth one or more, but not all, exemplary
embodiments of the invention as contemplated by the inven-
tor(s), and thus, are not intended to limit the invention and the
appended claims in any way.

The embodiments have been described above with the aid
of functional building blocks illustrating the implementation
of specified functions and relationships thereof. The bound-
aries of these functional building blocks have been arbitrarily
defined herein for the convenience of the description. Alter-
nate boundaries can be defined so long as the specified func-
tions and relationships thereof are appropriately performed.

The foregoing description of the specific embodiments will
so fully reveal the general nature of the embodiments that
others can, by applying knowledge within the skill of the art,
readily modify and/or adapt for various applications such
specific embodiments, without undue experimentation, with-
out departing from the general concept of the invention.
Therefore, such adaptations and modifications are intended to
be within the meaning and range of equivalents of the dis-
closed embodiments, based on the teaching and guidance
presented herein. It is to be understood that the phraseology or
terminology herein is for the purpose of description and not of
limitation, such that the terminology or phraseology of the
specification is to be interpreted by the skilled artisan in light
of the teachings and guidance.

The breadth and scope of the invention should not be lim-
ited by any of the above-described exemplary embodiments,
but should be defined only in accordance with the following
claims and their equivalents.

What is claimed is:

1. A method for managing a lockless queue comprising:

receiving data elements having individual priority types for
placement in a queue;

utilizing the priority types of the received data elements to
determine placement in the queue relative to an initial
location established when a first data element is placed

25

30

40

45

50

55

60

14

in an empty queue in order to manage the queue with a
combination of first-in first-out and last-in first-out
queue functionality; and

removing one or more data elements from the queue, the

removing including:

preventing additional data elements from being added to
a linked list including one or more second data ele-
ments, the preventing including identifying a most
recently inserted data element in the linked list, the
most recently inserted data element including a refer-
enceto a value, and updating the reference included in
the most recently inserted data element to reference a
stop node,

identifying an oldest data element relative to the existing
data elements in the queue, the identified oldest data
element being at a head of the linked list, and

removing the linked list from the queue.

2. The method of claim 1, further comprising:

determining whether the queue is empty;

when the queue is determined to be empty, inserting a

received data element at the initial location in the queue;
and

when the queue is determined to be not empty, determining

whether the received data element is of a first priority
type or a second priority type,

wherein the utilizing the priority types includes:

when the received data element is determined to be of
the first priority type, inserting the received data ele-
ment in the queue after each existing data element of
the first priority type in the queue; and

when the received data element is determined to be of
the second priority type, inserting the received data
element in the queue before each existing data ele-
ment of the first priority type after the initial location
in the queue.

3. The method of claim 1, wherein the utilizing the priority
types of the received data elements to determine placement in
the queue includes inserting the received data elements into
the linked list.

4. The method of claim 2, wherein the data element at the
initial location in the queue is an oldest data element relative
to the existing data elements in the queue.

5. The method of claim 2, wherein the inserting the
received data element in the queue before each existing data
element ofthe first priority type after the initial location in the
queue includes:

identifying a most recently inserted data element in the

linked list, the most recently inserted data element
including a reference, and the linked list including an
oldest data element in the queue; and

inserting the received data element of the second priority

type into the linked list by updating the reference
included in the identified most recently inserted data
element to reference the received data element of the
second priority type.

6. The method of claim 1, further comprising:

traversing the removed linked list starting at the head of the

removed linked list; and

processing one or more data elements in the removed

linked list based on an order in which the removed linked
list is traversed.

7. The method of claim 1, further including:

identifying a list buffer including a reference;

updating the reference included in the list buffer to refer-

ence the data element at the initial location in the queue.

US 9,246,836 B2

15
8. The method of claim 1, further including:
after the preventing additional data elements from being
added to the linked list, inserting a second received data
element in the queue, the inserting a second received
data element in the queue including:

determining whether the queue is empty;

when the queue is determined to be empty, inserting the
second received data element at a second location,
after the initial location, in the queue;

when the queue is determined to be not empty, determin-
ing whether the second received data element is of a
first priority type or a second priority type;

when the second received data element is determined to
be of the first priority type, inserting the second
received data element in the queue after each existing
data element of the first priority type in the queue; and

when the second received data element is determined to
be of the second priority type, inserting the second
received data element in a second linked list, different
from the first linked list, in the queue.

9. The method of claim 1, wherein the linked list includes
the first data element of a first priority type, and wherein the
utilizing the priority types of the received data elements to
determine placement in the queue further comprises:

inserting a second data element of second priority type

higher than the first priority type into the linked list after
the first data element, wherein the second data element is
before the first data element in the queue.

10. A system for maintaining a lockless queue comprising:

a memory; and

at least one processor coupled to the memory and config-

ured to:
receive data elements having individual priority types
for placement in a queue;
utilize the priority types of the received data elements to
determine placement in the queue relative to an initial
location established when a first data element is
placed in an empty queue in order to manage the
queue with a combination of first-in first-out and last-
in first-out queue functionality; and
remove one or more data elements from the queue, the
removing including:
preventing additional data elements from being added
to a linked list including one or more second data
elements, the preventing including identifying a
most recently inserted data element in the linked
list, the most recently inserted data element includ-
ing a reference to a value, and updating the refer-
ence included in the most recently inserted data
element to reference a stop node,
identifying an oldest data element relative to the exist-
ing data elements in the queue, the identified oldest
data element being at a head of the linked list, and
removing the linked list from the queue.

11. The system of claim 10, wherein the at least one pro-
cessor is further configured to:

determine whether the queue is empty;

when the queue is determined to be empty, insert a received

data element at the initial location in the queue;

when the queue is determined to be not empty, determine

whether the received data element is of a first priority
type or a second priority type;

10

15

20

25

30

35

40

45

55

60

16

when the received data element is determined to be of the
first priority type, insert the received data element in the
queue after each existing data element of the first priority
type in the queue; and

when the received data element is determined to be of the

second priority type, insert the received data element in
the queue before each existing data element of the first
priority type after the initial location in the queue.
12. The system of claim 11, wherein when the at least one
processor inserts the received data element in the queue
before each existing data element of the first priority type
after the initial location in the queue, the at least one processor
inserts the received data element into the linked list.
13. The system of claim 11, wherein the data element at the
initial location in the queue is an oldest data element relative
to the existing data elements in the queue.
14. The system of claim 11, wherein when the at least one
processor inserts the received data element in the queue
before each existing data element of the first priority type
after the initial location in the queue, the at least one processor
is configured to:
identify a most recently inserted data element in the linked
list, wherein the most recently inserted data element
includes a reference to a value, and the linked list
includes an oldest data element in the queue; and

insert the received data element of the second priority type
into the linked list by updating the reference included in
the identified most recently inserted data element to
reference the received data element of the second prior-
ity type.

15. The system of claim 10, wherein when the at least one
processor removes one or more data elements, the at least one
processor is configured to:

traverse the removed linked list starting at the head of the

linked list; and

process one or more data elements in the removed linked

list based on an order in which the removed linked list is
traversed.

16. A non-transitory computer-readable medium having
instructions stored thereon, the instructions causing at least
one processor to perform operations, the operations compris-
ing:

receiving data elements having individual priority types for

placement in a queue;

utilizing the priority types of the received data elements to

determine placement in the queue relative to an initial
location established when a first data element is placed
in an empty queue in order to manage the queue with a
combination of first-in first-out and last-in first-out
queue functionality; and

removing one or more data elements from the queue, the

removing including:

preventing additional data elements from being added to
a linked list including one or more second data ele-
ments, the preventing including identifying a most
recently inserted data element in the linked list, the
most recently inserted data element including a refer-
enceto a value, and updating the reference included in
the most recently inserted data element to reference a
stop node,

identifying an oldest data element relative to the existing
data elements in the queue, the identified oldest data
element being at a head of the linked list, and remov-
ing the linked list from the queue.

#* #* #* #* #*

